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Experiments carried out recently on a family of axisymmetric coflowing turbulent 
jets with different nozzle to free-stream velocity ratios are described. Special care 
was taken to ensure top-hat velocity profiles at the nozzle exit so as to reduce the 
number of parameters associated with the initial conditions. This results in a collapse 
of the data without the need to introduce different effective origins for the streamwise 
coordinate. The mean flow behaviour is compared to self-preserving asymptotic 
forms and stresses are also examined to investigate the possibility of self-preservation. 
Comparisons are made with measurements of other workers in coflowing jets and 
axisymmetric wakes. Further information on the structure of the coflowing jet is 
found by examining the spectral Reynolds shear stress correlation coefficient, the 
premultiplied spectra and the high-wavenumber forms of the spectra. An analysis 
was carried out to see if the mean flow, Reynolds stress distributions and spectra 
are consistent with an inviscid ‘double-roller’ vortex structure for the representative 
large-scale energy-containing motions. Results show support for such a model. 

1. Introduction 
This paper presents some experimental results and observations from a study of 

an axisymmetric turbulent jet issuing into a parallel moving airstream. The particular 
flow of interest consists of a turbulent jet issuing into a slow-moving, constant-velocity 
(Ul), outer flow of infinite extent (as opposed to the flow of a jet in a finite duct, or 
the flow of coaxial jets). Here this flow case will be referred to as a ‘coflowing jet’. 

This flow case is of interest for several reasons. One is that it is postulated that 
in this flow, at a sufficient distance from the nozzle, the jet should ‘forget’ its initial 
conditions and therefore only be determined by the net momentum excess (or the 
momentum radius, 8, which is invariant with streamwise distance in the absence of 
external pressure gradients) and local conditions (e.g. the local jet radius, A ,  and 
local velocity excess, U, = UcL - U1, where UcL is the velocity on the jet centreline 
and U1 is the velocity of the external stream). If this is true, then measurements 
from different coflowing jets should collapse when scaled with these parameters. It 
further suggests the possibility of a self-preserving flow at large distances from the 
nozzle. This possibility is supported by analysis which suggests that the flow may be 
asymptotically self-preserving in the limit of vanishingly small local velocity excess. 

The coflowing jet also provides a useful flow case for studying the structure of 
jets in general since the coflow removes the possibility of the backflow experienced 
in a free jet and also avoids the problems of measuring the almost zero velocities 
which occur in free jets at the edge of the shear layer. In this paper the possibility of 
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FIGURE 1. Layout of jet apparatus: 1. transition piece, 2. rubber membrane coupling, 3. honeycomb, 
4. bell-mouth, 5. screen with hole, 6. screen passing through jet, 7. nozzle, 8. vacuum pump, 9. 
suction line, 10. needle valve, 11. aerofoil support, 12. centrifugal fan. 

Perforations 

I I Cubic contraction --@e 

FIGURE 2. Details of the jet nozzle used. 

self-preservation for this flow case is discussed and some comments on the structure 
of jets are made based on spectral measurements which are shown. A ‘double-roller’ 
vortex model similar to that proposed by Townsend is investigated and found to be 
consistent with experimental data. 

2. Apparatus and experimental techniques 
The apparatus used in this study is shown in figure 1. The wind-tunnel cross-section 

is 1.22 m wide by 0.89 m high with a maximum velocity of 3.5 m s-l and a turbulence 
intensity of less than 0.6%. The jet issues from a 25.4 mm nozzle aligned with 
the wind-tunnel centreline. The nozzle has a contraction ratio of 9:l which gives a 
turbulence intensity of less than 0.5% at the outlet. The exterior of the nozzle has 
perforations which allow for boundary layer suction to avoid separation of the flow 
on the outer surface as shown in figure 2. Flow in the jet is produced by a centrifugal 
blower through honeycomb and a series of screens. The blower is attached to the 
apparatus by a thin flexible coupling which isolates the nozzle from vibrations. The 
jet flow could be varied in the range &35 m s-’. 

Mean flow measurements were made using both Pitot-static tubes and dynamically 
calibrated hot wires. Static pressure measurements along the jet axis were made with 
the jet operating for all cases and showed the axial pressure gradient to be within 
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+1%. The hot-wire filaments were nominally 5 pm in diameter and Imm long. 
Reynolds stresses were measured with dynamically calibrated 90" crossed wires and 
spectra were measured with uncalibrated crossed wires. The spectra were normalized 
so that 

1" wij ~f1d-f = uiui (2.1) 

where is the appropriate component of the Reynolds stress tensor. All of the 
spectra are displayed in terms of kl (the streamwise wavenumber) which is obtained 
using Taylor's hypothesis of frozen turbulence, i.e. kl = 2zf/U,  where f is the 
frequency and U, is some convection velocity here assumed to be equal to the local 
mean velocity of the flow at the point of interest. Such a spectral function is 

A final note is that 4i j [k l l ]  represents the power spectral density per unit non- 
dimensional wavenumber kl1 which implies 

where l is some length scale of interest and pij are the spectra for dimensional 
wavenumber kl.  In this paper $11,$22 and 433 will be referred to as the normal 
spectra and $13 as the co-spectra. 

Measurements of mean velocity, Reynolds stresses and spectra were taken at six 
streamwise positions for each flow case and at 17 cross-stream positions over the jet 
radius. 

3. Experimental results 

Initial conditions 
Mean velocity profiles taken at the nozzle (x/D = 0.04) are shown in figure 3. 

Here U,J is the velocity excess at the nozzle exit. It may be seen that the shape 
of the profiles for the two higher-iJ cases is almost identical (where AJ is the non- 
dimensional velocity excess at the nozzle exit, U o ~ / U l )  and the other case is not very 
different. In all cases, inner and outer boundary layers were laminar. 

Decay of centreline mean velocity excess 
If it is assumed that, at some distance from the nozzle, the flow becomes independent 

of the nozzle initial conditions and depends only on the momentum excess at the 
nozzle (as was suggested by Bradbury & Riley 1967), then it may be shown from 
dimensional considerations alone that 

3.1. Mean flow measurements 

IZ  = F [ ~ / B I  (3.1) 

where I is the local non-dimensional velocity excess ( I Z  = U o / U l ) ,  x is the streamwise 
coordinate measured from the nozzle exit, F is a universal function and B is the 
momentum radius of the jet as given by 

p u p 2  = p U(U - U1)2mdr 

where r is the radial coordinate measured from the jet axis. Figure 4 shows the 
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velocity decay for all three cases for x/e values up to 60. It may be seen that (3.1) is 
satisfied reasonably well by the present data beyond the potential core. It is interesting 
to note that it was not necessary to correct these results for a shift in origin as has 
been done by other authors (eg. Bradbury & Riley 1967 and Challen 1968) which, 
it has been suggested, allows for the effect of different initial conditions. The most 
probable explanation for this is that in all three cases the initial profiles are similar 
in shape and close to the ideal top-hat profile. The only variable needed to specify 
the different initial conditions is AJ and apparently this is quickly 'forgotten' as the 
flow evolves downstream. In fact the different cases collapse onto a single curve quite 
close to the end of the potential core. This result may be fortuitous but three quite 
different sets of data collapse reasonably well and support (3.1). 
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FIGURE 5. Centreline velocity excess premultiplied by ( X / O ) ~ / ~  versus 1. 

Maczynski (1962), Tani & Kobashi (1951), Henbest & Yacoub (1991) and others 
have found the decay of the centreline velocity excess to be inversely proportional 
to the distance from the nozzle. The present results show that this is approximately 
valid only in the region close to the end of the potential core. 

The log-log form of presentation in figure 4 is ideal for examining possible power- 
law forms for the decay. It may be seen that toward the nozzle (small x/8) the decay 
appears to follow an x-l law as would be expected if it approached the self-preserving 
form for a jet exhausting into still air. It may also be noted that at large x / 6  it 
appears that the decay asymptotes to an x-2/3 power law which is consistent with the 
behaviour of a self-preserving, small-excess jet, This does not imply that the flow is 
self-preserving in either case, but it demonstrates that the mean-flow behaviour is at 
least consistent with this possibility. 

In order to further illustrate the behaviour at large x/8, figure 5 shows the centreline 
velocity excess decay for the 1, = 2 case premultiplied by ( ~ / 8 ) ~ / ~  and plotted us. 1. 
It may be seen that the functional form does appear to asymptote to an ( ~ / 6 ) - ~ / ~  
powerlaw as 1 + 0. Curve-fitting this data also allows an estimation of the constant 
in the -2/3 decay law (i.e. 1 = C ( X / ~ ) - ~ / ~ ) .  The estimate shown was found using an 
arbitraty curve-fit of the form 

A = C(A1 + (x/8)2)'/6/(x/e) (3.3) 

which has the asymptotic behaviour 

The constants for this case were found to be C NN 2.67 and A1 NN 299. 
It should be noted that if the mean velocity excess does decay like x-2/3 then the 

mean momentum equation implies that the spreading rate must scale with x1/3. This 
spreading rate is also shown on log-log coordinates in figure 6. 

It should be noted that for the purposes of these experiments the jet width is 
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defined by 

A 2 =  { I m r 2 ( U - U l ) d r } / ( ~ m ( U - U l ) d r } .  (3.5) 

This follows Townsend (1976) and is based on the variance of the velocity distribution. 
As in the case of the decay of the centreline velocity excess, if it is assumed that far 
enough downstream the behaviour of the jet is determined only by the momentum 
excess, then the width of the jet is given by 

A / O  = G[x/8] .  (3.6) 

It may be seen in figure 6 that this equation is reasonably well satisfied by the results 
and an approach to a 1/3 power-law form is at least plausible. 

3.2. Mean velocity profiles 
Figure 7 shows the mean velocity profiles for the I., = 10 flow case at different 
streamwise stations. This case shows the typical collapse of the profiles when scaled 
with local parameters. Other cases show a similar collapse. 

Figure 8 shows the profiles for all three coflow ratios at a single station ( x / D  = 30). 
Although the collapse here is not perfect it certainly shows that the functional form 
of the profiles for all three cases is quite close. Also shown on this figure is a curve-fit 
to the mean velocity profiles which is used later in the calculation of the Reynolds 
shear-stress from the mean flow parameters using the momentum equation. 

3.3. Reynolds Stress measurements 
In order to better describe and understand the Reynolds stress data it is useful to 
return to the concept of a flow which is independent of the exact initial conditions 
of its generation and depends only on the momentum imparted to it at its source. 
Thus the stresses may be considered to depend only on x/8 or equivalently on U l / U ,  
(since if this argument holds it has already been shown that U l / U ,  is a universal 
function of x/O ). In this way the flow in the AJ = 2 case for example may be treated 
as the far-downstream behaviour of the I J  = 10 case. Thus rather than examining the 
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behaviour for three distinct flow cases it is possible to treat all the results as coming 
from one universal flow. Mathematically, then 

where the Fij are universal functions of x/f3 for a given r/d. In order to examine the 
behaviour of the Reynolds stresses a typical, or representative value is plotted us. x/O. 
For the normal stresses (u2, u2 and 2) this is chosen as the value at the centreline 
- and since the flow is axisymmetric then 7 = 2 on the centreline and hence only 
w2 is shown. Since the shear stress is zero on the centreline then the characteristic 
value for this component is chosen as the value of the maximum. The results are 

- _  
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shown in figure 9. The behaviour is very interesting. Although the higher coflow 
cases (AJ = 10,20) appear to collapse on a universal curve, there seems to be a slight 
drop in the level of the stresses for the LJ = 2 case. This may be due to further 
differences in initial conditions in this case. Apart from this it would appear that all 
the stress components reach a peak at about x/O = 9, drop off to a broad minimum, 
then continue gradually to increase. 

If the flow were to reach a self-preserving (or approximately self-preserving) state 
then the functions Fij would be expected to become asymptotically constant (i.e. 
independent of x/9).  The results of Antonia & Bilger (1973), which extend beyond 
x/O = 100, show that the stresses appear to be increasing even at this distance. An 
important point to note when assessing these results is that the uncertainty in the non- 
dimensional stresses is significantly affected of the uncertainty in the measurement of 
the velocity excess. 

Further information on the possible approach of axisymmetric flows to a self- 
preserving small-excess (or small-deficit in the case of wakes) state may be obtained 
by referring to table 1. 

Some initial points should be noted. Firstly some of the results have been measured 
from plots of published data. While care was taken to make the measurements 
accurate there will inevitably be some error involved. Another point is that the values 
of the stresses given by Antonia & Bilger (1973) for their ,IJ = 2 case seem to be 
much larger than the results of the present study and of the other coflowing jet studies 
shown at similar coflow ratios. The reason for this is not known. 

It may be seen that the measured stresses for the wake flows (excluding Chevray 
1968) are much larger than any of the measurements made in coflowing jets, suggesting 
that the turbulence is more significant in these flows. This may be related to the rather 
severe disturbances characteristic of the initial conditions in these flows. These initial 
disturbances die out rather slowly and so may affect the turbulence far downstream. 
It may be noted that the measured stresses are highest in the case of the wake 
of the disk but much lower in the case of the wake of a spheroid, a fact which 
is consistent with this explanation. This is also shown convincingly in the results 
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Author 

Wygnanski & Fiedler (1969) 
Antonia & Bilger (1973) 

Biringen (1986) 

Smith & Hughes (1977) 

Present Study 

Uberoi & Freymuth (1970) 
Chevray (1968) 
Carmody (1964) 

Bevilaqua & Lykoudis (1978) 

Flow 

Free jet 
Coflowing jet 

1J =3.5 
AJ =2 

Coflowing jet 

.zJ =4 
aJ=2.33 

Coflowing jet 

Coflowing jet 

1J=9 

15~0.75 

AJ=20 
12J=20 
AJ=10 
1J=2 

Wake of sphere 
Wake of spheroid 

Wake of disk 
Wake of sphere 

Wake of porous disk 

- 
x / D  u2/U2 

90 0.078 

248 0.154 
200 0.23 

200 0.094 
178 0.082 
182 0.14 

40 0.073 

30 0.058 
90 0.068 
90 0.080 
90 0.075 

100 0.727 
18 0.09 
28 - 

110 0.447 
110 0.0528 

iiE/ u,' 

0.016 

0.038 
0.060 

0.025 
0.029 
0.033 

0.028 

0.017 
0.021 
0.026 
0.026 
0.27 
0.05 
0.52 
- 
- 

-- 
u2/w2 

1.28 

- 
- 

1.96 
2.10 
2.37 

3.79 

1.62 
1.43 
1.28 
1.14 
1.10 
1.10 
- 
- 
- 

- 
U 2 / 1 ( w ,  

4.6 

3.05 
3.90 

3.76 
2.83 
4.24 

2.61 

3.37 
3.23 
3.05 
2.88 
2.69 
2.33 
2.33 
- 
- 

TABLE 1. Characteristic parameters of jet and wake flows. ( D  is nozzle exit diameter.) 

of Bevilaqua & Lykoudis (1978) where the streamwise turbulence intensity is much 
higher for the wake of a sphere than for the wake of a porous plate with the same 
drag coefficient (which is comparable to the values recorded in coflowing jets). It 
is interesting that the ratio of streamwise turbulence intensity to radial turbulence 
intensity on the centreline is comparable in all flows and does not appear to be 
greatly affected by the initial conditions. It appears to approach one for the wake 
flows. The results of the present study also show a monotonic decrease toward the 
wake value as the flow changes from a free-jet-like state toward a small-excess-jet-like 
state. Unfortunately the results of Biringen (1986) show the opposite trend, i.e. this 
quantity increases as the coflow ratio is decreased. His results are also higher than 
those of the present study (and even higher than the results of Wygnanski & Fiedler 
1969 for a free jet). It is possible that this is related to the initial conditions of the 
flow since the results of Smith & Hughes (1977) (who had initial conditions like a 
fully developed pipe flow with, most probably, significant external boundary layers 
as well) are even higher. 

Also of interest is the ratio of the streamwise turbulence intensity to the Reynolds 
shear stress. The present results again show a monotonic decrease from the high 
values characteristic of a free jet (4.6 for Wygnanski & Fiedler 1969) to the lower 
values characteristic of the wake flows (about 2.3). Unfortunately here again the 
results of Biringen (1986) are in conflict with the present data, as are the results of 
Antonia & Bilger (1973) (for A, = 3.5). However, those of Smith & Hughes (1977) 
seem to support a trend toward smaller values as the coflow is increased. It is 
possible that Biringen (1986) may have had different initial conditions requiring the 
specification of other parameters in addition to ,IJ for the three different flow cases 
reported. 
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4. Reynolds shear stress calculations 
The momentum equation for axisymmetric flow is given by 

au au a(2-2) - 1 d ( W r )  
ax ar ax r dr ' 

U-+W-+ __ 

In this equation the viscous stresses have been neglected and small terms relating 
to gradients of the normal stresses have been dropped. If the normal stress terms are 
neglected then using this equation it is possible to calculate the Reynolds shear stress 
using only mean flow quantities. In particular, in the case of zero-pressure-gradient 
flow, it is possible to use the continuity equation and the momentum integral equation 
to eliminate the mean cross-stream velocity ( W )  and to express terms involving the 
jet radius ( A )  in terms of the non-dimensional velocity excess ( I - ) .  After some algebra 
this results in an expression for uW/U,' given by 

Here x* = x/6, f = f [5] = (U - U,)/U,,  5 = r / A  and the I-terms are integrals o f f  
given by 

Hence we arrive at an equation for the Reynolds shear stress of the form 

w/u,' = g[~,x/O,tI .  (4.3) 

Then, using the curve-fit to the centreline velocity excess and the curve-fit to the mean 
velocity profiles, it is possible to express A in terms of x/B. Hence the Reynolds shear 
stress becomes a function only of x/O for a given 5 (at least for a given flow where 
the curve-fit to the 2 versus x/O data applies). 

Figure 10 shows the calculation of the Reynolds stress using this equation at 
= 1 (which is close to the maximum Reynolds shear stress) compared with the 

experimental results. 
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variation of the shear stress with cross-stream coordinate with the experimental results (1, = 10, 
X / D  = 90, x/e = 9). 

The calculation seems to give the correct trends except at very large x/8 where 
the experimental data continue to increase while the prediction appears to approach 
an asymptotic value. The quantitative agreement is not perfect, but is encouraging. 
This is perhaps not surprising given that the normal stress terms have been neglected 
and that the curve-fit is not perfect (particularly when finding derivatives). These 
effects may explain the departure at small x/8. The departure at large (x/O) is more 
serious and cannot be explained in terms of the neglected stresses or the nature of 
the curve-fit. 

At this stage the reason for the departure is not known, but it is possible that 
the wind-tunnel walls have some effect on the axisymmetry of the flow at these far 
stations. It should also be noted that for the AJ = 2 case there appears to be a 
departure from the 'universal' curve mentioned earlier which may be due to the small 
difference in the initial conditions. Based on the earlier discussion it would seem that 
less severe initial disturbances lead to smaller values of stresses. In the AJ = 2 case the 
initial profile is not quite a top-hat shape and has smaller mean velocity gradients. 
This effect needs to be examined further before any firm conclusions can be made. It 
suggests that, perhaps, the Reynolds stresses also depend on some parameter related 
to the severity of the initial disturbance. In order to examine the agreement of the 
variation of shear stress with 5 = r / A  the station at x/8 = 9 was chosen since the 
agreement of magnitudes here is good (see figure 10). Figure 11 shows the excellent 
agreement of the functional form for this station. 

4.1. A note on prediction of the evolution of the coJowing jet 
In order to calculate the evolution of the axisymmetric jet (i.e. the variation of jet 
diameter and decay of the centreline velocity excess) it is necessary to make some extra 
assumptions about the behaviour of the mean quantities. The momentum integral 
equation relates the growth of the jet to the decay of the centreline mean velocity 
but this is not sufficient to give the growth as a function of streamwise distance. To 
find the evolution it is necessary to solve for two quantities, the local jet diameter 
and the local velocity excess. Use of the momentum integral equation eliminates one 



168 T. B. Nickels and A. E. Perry 

quantity and reduces the problem to one of solving for one parameter. One form of 
this parameter as given by Townsend (1976) is the entrainment parameter which may 
be written as 

and is constant for any one type of self-preserving flow but varies between different 
types of self-preserving flow. In the case of a non-self-preserving flow like the coflowing 
jet this parameter varies with streamwise distance from a value approaching that of 
a self-preserving free jet to that approaching a self-preserving small-excess jet. Some 
calculations of the evolution of the coflowing jet have been based on the assumption 
of geometrical similarity of the Reynolds stresses with a local velocity scale which 
is not equal to the local velocity excess but varies with streamwise distance (e.g. see 
Bilger 1968; Antonia & Bilger 1973; Townsend 1976, pp. 255-258). Use of the energy 
integral equation then makes it possible to solve for the streamwise evolution of the 
entrainment parameter. Consideration of the asymptotic forms of (4.2), however, 
shows that the functional form for the shear stress is different in the case approaching 
a jet exhausting into still air (uW/U,” - IAf/<) and in the case of a small-excess jet 
(W/U,’ - {f). Figure 12(a) shows these two forms scaled to have the same magnitude. 
It may be seen that the geometrical forms are quite different and hence this method 
cannot be applied over the whole range of the flow. Of course (4.2) neglects the 
variation of the normal stresses so in order to check that this change of shape occurs 
in the real flow, figure 12(b) shows two profiles for stations close to the two asymptotic 
limits. It would seem then that the variation in shape predicted by (4.2) also occurs 
in the experiment. This may explain why Antonia & Bilger (1973) could not find real 
solutions for the entrainment parameter with this approach (assuming geometrical 
similarity of the Reynolds stresses) using any reasonable experimental inputs. 

5. Reynolds number effects in the flows studied 
With the aid of equation (4.2), in conjunction with (3.3) and the curve-fit to the 

mean velocity profile shown in figure 8, the ratio of the Reynolds shear stress to the 
viscous shear stress can be computed (i.e. W / ( v a U / i 3 r )  and was evaluated at { = 1 
which is close to the point of maximum Reynolds shear stress). In the cases reported, 
this varies from 500 to 3000 so one would expect Reynolds number similarity in the 
sense of Townsend (1976) to apply, i.e. the mean relative motions and the energy- 
containing motions should be independent of viscosity. The same could be said of all 
the other flow cases shown in table 1. 

6. Spectra 

Kolmogorov scaling 
According to Kolmogorov (1941) as the energy of the flow is transferred from large 

to smaller eddies the overall processes determining the flow become progressively less 
organized. If the Reynolds number of the flow is high enough then the smallest eddies 
should be isotropic and their energy should be determined by viscosity and turbulent 
dissipation alone. This leads to the definition of the Kolmogorov length and velocity 

6.1. The high-wavenumber motions 
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In order to calculate these scales it is necessary to estimate the dissipation. Here 
the isotropic assumption was used to estimate the dissipation from the stream wise 
spectra : 

2 
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Application of Taylor’s hypothesis makes it possible to estimate h / d x  in terms of 
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&/at and transforming to wavenumber space (6.3) becomes 
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Figure 13 shows one profile from each of the streamwise stations measured for ail 
three flow cases plotted on a single set of axes at r/A=l which is close to the point 
of maximum shear stress. Plotting these results is a good test for the applicability 
of this scaling since the Kolmogorov scales vary significantly between flow cases (the 
dissipation varies by a factor of approximately 2000 over this range so the length 
and velocity scales vary by a factor of approximately 6.5). It may be seen that all 
profiles seem to collapse at the high-wavenumber end of the spectra. Hence these 
results show that the high-wavenumber collapse occurs for all flow cases regardless 
of the local Reynolds number or the Reynolds shear stress. It should be noted that 
a similar collapse occurs for the other normal components of spectra which are not 
shown here. 

It is interesting to observe the peel-off that occurs from the -5/3 law as the 
Reynolds number decreases. Figure 14 shows this trend. Three stations are shown 
from each flow case and the spectrum is premultiplied by (klq)5/3 so that a -5/3 law 
corresponds to a plateau. It may be noted that the high-wavenumber end appears 
universal and the different flow cases peel-off from a -5/3 law at the low-wavenumber 
end. The Taylor microscale Reynolds number, Ri, drops from 434 to 84 in this plot. 
Here the Taylor microscale is defined as 

and was calculated using the isotropic assumption, i.e. 
- 
U2 A$ = 1 5 ~ -  
E 

(where E is the dissipation). 
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FIGURE 14. Peel-off from -5/3 law with decreasing Reynolds number. 
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It should be pointed out that the meaning of the Taylor microscale is not clear 
in a turbulent shear flow since it is really a concept that only applies to isotropic 
turbulence. It is mentioned here only as a basis for comparison and since it is used 
by many authors as the appropriate Reynolds number when considering fine-scale 
motions. The peel-off at the highest wavenumbers can be shown to be due to the 
spatial resolution of the hot-wire probes and varies due to the variation of q and 
hence e/q where d is the length of the hot-wire sensor (this peel-off occurs where 
kld = 1 for each profile). 

6.2. Isotropy and the -5/3 law 
The spectra in the high-coflow ratio case shows distinct regions which may be 
interpreted as corresponding to a -5/3 law. This is not surprising since this flow 
case approaches that of a free jet, for which other researchers have observed similar 
behaviour (see Gibson 1963). The -5/3 law is traditionally associated with the 
concept of local isotropy, as originally proposed by Kolmogorov (1941). In order 
to examine the relationship between the -5/3 law observed in this flow case and 
the concept of local isotropy measurements of the spectral Reynolds shear stress 
correlation coefficient were made for flow cases that exhibited a -5/3 law. This also 
gives some information about the structure of the flow since it shows at which scales 
the Reynolds shear stress is produced. The spectral Reynolds shear stress correlation 
coefficient will be defined here as 

If the flow is isotropic at some point in wavenumber space then this quantity 
should be zero. Figure 15 shows the streamwise spectrum premultiplied by (klq)5/3 

and the plateau corresponds with an inertial subrange. Also shown on the same plot 
is the correlation coefficient spectrum. The correlation coefficient R13 can be seen 
to be finite but drops rapidly to small values at the high end of the wavenumber 
scale. The negative values at high wavenumbers were initially thought to be due to 
correlated electronic noise on the signals; however some results from the model to be 
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FIGURE 15. Reynolds shear stress correlation coefficient at x / D  = 30 for AJ = 20 and r / A  = 1 

(Rl = 434). This plot also shows the streamwise spectrum premultiplied by (k147)~'~. 

presented later suggest that these may in fact be a characteristic of the structure of 
the large-scale energy-containing eddies. Since a given eddy may have energy spread 
over a range of wavenumbers, the finite R13 in the plateau region is probably coming 
from contamination of this region from the signatures of the large scales whereas the 
fine-scale eddies in the plateau region are probably isotropic, although there is no 
way of proving this at this stage. Some results of the model presented later support 
this idea of contributions to the high wavenumbers from the large scales. 

6.3. Structure of theflow 
In order to examine the distribution of energy in wavenumber space it is useful to 
examine the form of the prernultiplied spectra (i.e. kl~Iq5~~[kld]/U,2) plotted versus 
log[kld]. In this form, the area under the graph is the contribution to the appropriate 
component of the Reynolds shear stress tensor. Particularly useful are the cospectra 
since these will depend on the large scales in the flow and should be uncontaminated 
by the small-scale locally isotropic eddies mentioned in the previous section. In order 
to examine the distribution of the stresses in wavenumber space we will consider here 
the spectra normalized by their maximum values so that we may examine changes 
in bandwidth with Reynolds number and position without regard to the changes in 
magnitude which must occur due to the nature of the flow. Figure 16 shows the 
variation of kld413[klA] with changes in local Reynolds number (R,, = U,A/v)  at a 
fixed r/A = 1. It may be seen that there is little variation in the bandwidth, which 
suggests that the structure is unaffected by Reynolds number. This is in line with 
Townsend's (1976) Reynolds number similarity hypothesis. 

Hence the large-scale structure is seen to be Reynolds number invariant. It is also 
interesting to note that all of the contributions to the cospectra occur in a band 
centred on k l d  = 1, which extends approximately from klA = 0.1 to klA = 10, 
which suggests that the eddies contribute to the Reynolds shear stress are of a size 
of order A .  

Figure 17 shows the variation of the cospectra with non-dimensional cross-stream 
coordinate r / A .  It may be seen that there is little variation, suggesting that the 
distribution of eddies does not change with cross-stream position. The appropriate 
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FIGURE 17. Variation of bandwidth of cospectra with cross-stream position (r,/A). 

length scale is the local jet width regardless of position. This suggests that the 
bandwidth is independent of cross-stream position, in contrast to boundary layers 
where recent results (MaruSik, Nickels & Perry 1994) have shown that the bandwidth 
of the Reynolds stress increases as the wall is approached (a fact which is consistent 
with the model of Perry & Chong 1982). 

These results suggest that the Reynolds shear stress in jets is produced by eddies 
of a size which scales with the local jet radius and which span the jet radius. For 
comparison with figure 16, and in order to show the effect of the fine scales or 
'isotropic' motions, figure 18 shows the streamwise component of the spectra pre- 
multipied by kld and divided by its maximum value for two extreme values of RA. It 
can be seen that there is an increase in the high-wavenumber energy with the increase 
in RA which is not present in the cospectra. At this point it is speculated that this 
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FIGURE 18. Variation of bandwidth of streamwise spectra with Reynolds number. 

comes from fine-scale isotropic eddies which scale with the Kolmogorov length and 
velocity scales. 

7. A model for axisymmetric turbulent jets 
It has been suggested by Townsend (1976) based on a study of correlation mea- 

surements that the main turbulent motion in turbulent free shear flows is probably 
dominated by double-roller eddies which are inclined to the streamwise direction. The 
characteristic velocity scale of these coherent structures is proportional to U, and the 
characteristic length scale is of order A ,  the characteristic jet radius. They probably 
carry most of the Reynolds shear stress and each double roller-eddy has a limited 
azimuthal extent. Such structures are consistent with the experimental observations 
of Dahm & Dimotakis (1986) and Shlien (1987). Figure 19 illustrates a suggestion 
for such a structure and it is envisaged that a number of these structures are arranged 
randomly in different azimuthal and streamwise positions with equal probability. 
The overall shape of the structure was suggested in part by the experiments of 
Liepmann & Gharib (1992) and the vortex calculations of Martin & Meiburg (1991). 
The dimensions shown in figure 19 are for one particular test structure which has 
been used to compute the results which follow. The aim is to see if the mean 
flow distribution, the energy-containing Reynolds stress distributions and the as- 
sociated spectra are consistent with such a model. An analysis will be developed 
here which is somewhat analogous to that developed by Perry & Chong (1982) and 
Perry, Henbest & Chong (1986) for the random distribution of horse-shoe structures 
in a turbulent boundary layer. The test-case eddy structure is composed of straight 
vortex rods to simplify the analysis and these rods have been given a Gaussian dis- 
tribution of vorticity to avoid singularities in the velocity field. It is also envisaged 
that these structures are immersed in a sea of fine-scale turbulence which is probably 
locally isotropic. In the model this background turbulence is not included and hence 
we would expect some energy to be missing at the high-wavenumber end of the 
spectra. 

The analysis is as follows. From the Biot-Savart law, for a given structure, the 
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velocity due to a single structure is 

(7.1) 

where U, is the characteristic velocity of the eddy (which will be proportional to 
r/A, where r is the circulation of the eddy used) and the A denotes a length non- 
dimensionalized by A (e.g. 2 = x / A ) .  Taking Fourier transforms (FFTs are used in 
the numerical work) of the velocity signatures along lines in the streamwise direction 
gives 

(7.2) 

where kl is the streamwise wavenumber and j = G. The contribution to the power 
spectral density for each streamwise cut from one eddy structure is 

- ui =f.[^ * 
I x, Y ,  21 ue 

F~ [kl A ,  j , 2 ]  = fi [i, j ,  &]e-J2nkld2 djZ L 
P i j [ k l A ,  j , ; ]  = Re{F,’[kld,9,ẑ lFj[kld,E,ẑ l) (7.3) 

where Re denotes the real part of a complex function and * denotes the complex 
conjugate. For a given short section of jet there probably exist many such eddies 
arranged at different azimuthal locations (different a) perhaps in a star-shaped array. 
Since the eddies exist in an unbounded fluid they can also move randomly in the 
vertical and horizontal directions (i.e. the y- and z-directions), although we would 
expect this movement to be bounded (otherwise the jet would have infinite extent). In 
this analysis this random freedom of movement is accounted for by jittering a single 
eddy bodily in both the horizontal and vertical directions. This idea is consistent 
with the observations of intermittency of the turbulence at the edge of a turbulent 
shear flow. In this analysis a Gaussian jitter is applied to the simple eddy using the 
following convolution integral : 

The tilde denotes a jittered function, 2 and g are the non-dimensional shifts in the y- 
and z-directions respectively and a and b will be referred to as the (non-dimensional) 
jitter parameters. In this study a and b are assumed to be equal for simplicity. 
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A new stress function may be formed using the following transformation (presented 

qij(k1, r ,  4) = RpiRqjPpq(k1, r cos a, r sin a) (7.5) 

where Rij is the rotation tensor which represents rotation about the x-axis which may 
be written in a matrix form as 

0 
(7.6) R . =  0 cosa sina [: -sinu cosa 

In the numerical scheme the rotated spectral components are calculated first at 
points on the original Cartesian grid using (7.5) and then the values are interpolated 
onto a new cylindrical grid with similar resolution. 

To find the (cross) power spectral density we average this spectral function for all 
streamwise cuts for different a and multiply by the eddy density: 

where N is the average number of eddies per unit streamwise distance and per 
unit revolution in a. The Reynolds stresses are then calculated by integrating the 
appropriate power spectral densities thus : 

The mean velocity can be found as follows. The contribution to the mean velocity 
from one eddy is 

U p ,  21 = 1: u1 [a, 9, f]d2 (7.9) 

where u1 is streamwise component of the Biot-Savart signature. From a single jittered 
eddy the contribution is 

Transforming to cylindrical coordinates we have 

Ua[r,a] = Bfi,Z^] (7.11) 

where the subscript a refers to the function transformed to axisymmetric coordinates. 
Averaging over all signatures azimuthally and taking into account all eddies gives 

(7.12) 

where Ua is the mean velocity and N is again the average number of eddies per unit 
streamwise distance and per unit revolution of a. 

If we then non-dimensionalize the Reynolds stresses by the computed mean we 
find that the non-dimensional Reynolds stresses are premultiplied by 1 / N  since the 
stresses scale with N and the mean velocity squared depends on N 2 .  Hence there is an 
unknown scaling factor which depends on the density of the eddies in the sampling 
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volume. Here this factor is found by comparing the value of u’/U,’ at the jet axis 
and scaling all computed values by this one factor. In the case of the mean velocity 
distribution all values are scaled by the mean velocity excess on the jet axis as in 
experiment. 

To obtain a rough guide as to the value of the jitter parameter a, intermittency 
measurements are useful. Corrsin & Kistler (1955) found that the position of the 
turbulent/non-turbulent interface given by g [x, r ,  t] has a probability distribution 

(see Townsend 1976). Then it follows that the intermittency is 

Y[X,rl = ~ m P [ i , X l d i .  

(7.13) 

(7.14) 

If we take the top of the eddy as the position of the interface then for the eddy given 
t;, = 24 (see figure 19), and the value of the jitter parameter used here (a = b = 1.8) 
gives a/[, w 0.26 which is in reasonable agreement with experimental measurements 
for axisymmetric turbulent jets (estimates from the data of Wygnanski & Fiedler 1969 
in a free jet give 5, = 2.24 and a/co = 0.22). 

8. Results 
Results are compared with the experimental case for x / D  = 30 and iJ = 2. Many 

different eddy shapes have been tried as the representative double roller eddy but the 
one shown in figure 19 was chosen since it gave the correct Reynolds stress ratios 
and reasonably good shapes for the spectra. This does not necessarily mean that this 
is the final shape. It is best regarded as a ‘first stab’ which is consistent with the 
data. Exploring all possible shapes would be a major task. It will be noticed that two 
‘tail-pieces’ have been added which aided in obtaining the correct stress ratios. Their 
form is similar to the streamwise vorticies found in both experiment (Liepmann & 
GSarib 1992) and in the numerical simulation of Brancher, Chomaz & Huerre (1994) 
which occur between distorted (star-shaped) ring vorticies in the near field of round 
jets. One point which may concern some readers is that the rods end in mid-air 
which means that the vorticity field is not divergence free. While this is not ideal it is 
simply an expedient to avoid the huge computational effort involved with generating 
an array of randomly distorted, and positioned, star-shaped vorticies. It should also 
be pointed out that while the vorticity field is not divergence free the velocity field 
is since it is, effectively, the curl of a stream function (see Winckelmans & Leonard 
1993). 

The results for the Reynolds stresses calculated for this structure are shown in 
figure 20 compared with experiment. Both the shapes and relative magnitudes of 
the stresses compare reasonably well with the experiment. The mean velocity profile 
generated by this structure is shown in figure 21 compared with experiment. In 
this case the agreement is reasonable. Figures 22-24 show the comparison of the 
computed spectra with the experimental data. It may be seen immediately that the 
model spectra drop off more quickly at high wavenumbers than the experimental 
data, a fact which may be attributed to the neglect of the fine-scale structure. The 
qualitative trends for the low-wavenumber region of the spectra are better. The cross- 
stream ($22) and radial ( 4 3 3 )  spectra show a distinct ‘bump’ close to klA = 1 in both 
the experiments and the model. This ‘bump’ is absent in the streamwise and Reynolds 
shear stress spectra, again for both the experiment and model. The position of the 
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FIGURE 21. Experimental mean velocity profile ( x / D  = 30,AJ = 2) compared with model 

(solid line). 

'bump' and its shape and magnitude are not reproduced exactly. Another important 
difference between the 4 2 2  and 4 3 3  spectra from the model and experiment is that 
this 'bump' appears to be significant for all radial position in the experimental results 
but is only significant at large t in the model. This problem should hopefully be able 
to be overcome by modifying the details of the eddy structure. Also shown is the 
Reynolds shear stress correlation coefficient spectra calculated from both the model 
and experiment. The similarity is interesting. The comparison supports comments 
made earlier that the large-scale structures in the flow make significant contributions 
to the correlation coefficient even at high wavenumbers, but of course the contribution 
to the stresses at high wavenumber is negligible. Also of interest is that the model 
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FIGURE 22. (a)  Experimental streamwise spectra, (b)  experimental cross-stream spectra, and (c )  

experimental radial spectra ( x / D  = 30, 15 = 2, left) compared with model (right). 

shows negative values for this quantity at high wavenumbers which also appear in 
experiment. The reason for this is not yet fully understood; however it suggests 
that this result in the experiments may not be due to correlated noise on the signals 
(further tests have shown that the noise is not large enough to explain the values). 
Extensive numerical tests also suggest that it is not due to aliasing or resolution 
problems in the model. Further investigation into this phenomenon is being carried 
out. It should be pointed out that this comparison was made for interest after the 
details of the model were fixed and the results had been calculated. No adjustments 
were made to improve the agreement for this quantity and the good agreement with 
experiment came as somewhat of a surprise to the authors. 
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9. Discussion and conclusions 
The experimental results presented show that with careful control of initial condi- 

tions different coflowing jet flows can be considered to be features of a single coflowing 
jet flow which depends on local conditions alone. The results also give a picture of the 
structure of the jet as consisting of some form of large-scale structure, which scales 
with the local jet width, that is responsible for a large part of the Reynolds shear 
stresses. In addition, the results suggest some additional fine-scale contributions to 
the normal components of the Reynolds stresses which may be isotropic and seem to 
scale with the Kolmogorov length and velocity scales. 

Based on these observations a simple, crude model of an axisymmetric jet has 
been proposed. Whilst it is crude, it nevertheless predicts the correct qualitative 
trends for the radial profiles of Reynolds stresses, the mean velocity profiles, and even 
reproduces some features of the low-wavenumber spectrum and intermittency. It also 
shows some surprising results for the Reynolds shear stress correlation coefficient 
which also agree with experiment. Thus it shows sufficient promise to, at least, 
warrant further investigation. In order to improve the model further, the effects of 
changes in the large-scale structure need to be investigated in more detail including 
the effect of core size and orientation. These changes in structure may be able to be 
related to changes in the stresses as the flow changes from a free-jet-like flow to a 
small-excess jet flow. 

- 

- 

- 
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The proposed model demonstrates several of the qualitative trends exhibited by 
experimental measurements in jets. Further work needs to be done to justify the 
underlying assumptions inherent in the model and to investigate its relationship to 
the real structure of turbulent jets. The main advantage of this model is its physical 
basis which provides a conceptual structure that draws together many different ideas 
and observations and also provides a tool which may help to explain new observations. 

The authors wish to thank the Australian Research Council for the financial support 
of this project. 
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